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Abstract

A unifying equation for five fundamental effective thermal conductivity structural models (Series, Parallel, two forms of Maxwell–
Eucken, Effective Medium Theory) was derived. A procedure for modelling complex materials as composites of these five basic structural
models using simple combinatory rules based on structure volume fractions was proposed. The combined models have advantages over
other generic models such as the semi-empirical Krischer model, in that each has a distinct physical basis, and that they are not depen-
dent on any empirical parameter. As a by-product, a physical description has been identified for Levy’s model, which was previously used
with reservation by some researchers because it was derived solely by mathematical reasoning without any explicit physical basis.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Modelling the effective thermal conductivity of hetero-
geneous or composite materials is of interest in many heat
transfer applications. Progelhof et al. [1] and Carson et al.
[2] provide reviews of relevant modelling approaches. A
substantial number of effective thermal conductivity mod-
els have been proposed, some of which have been intended
for highly specific applications, while others have wider
applicability. A heterogeneous material’s effective thermal
conductivity is strongly affected by its composition and
structure, and, as yet, there does not appear to be any sin-
gle model equation that is applicable to all types of struc-
ture. Instead, a common approach has been to develop a
set of equations based on a conceptual ‘parent’ model, that
is modified to varying extents to account for variations
in composition and structure [3–6]. Alternatively, an
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empirical parameter may be inserted to account for differ-
ences in structure [2,7]. Another common way of estimat-
ing effective thermal conductivity for composite materials
with known microstructures is to make rigorous numerical
simulations using the finite difference or finite element
methods [8–10]. However, analytical models are preferred
over numerical models in many applications due to their
physical basis, rapid and low cost of calculation, and rea-
sonable accuracy even when microstructure is uncertain.

Many (if not most) effective thermal conductivity mod-
els found in the literature are based on one or more of five
basic structural models; specifically, the Series, Parallel,
Maxwell–Eucken (two forms) [11,12] and Effective Med-
ium Theory (EMT) models [13,14]. The physical structures
assumed in the derivations of the Series and Parallel mod-
els are of layers of the components aligned either perpen-
dicular or parallel to the heat flow, as their names
indicate. The Maxwell–Eucken model assumes a dispersion
of small spheres within a continuous matrix of a different
component, with the spheres being far enough apart such
that the local distortions to the temperature distributions
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Table 1
Five fundamental effective thermal conductivity structural models for two-component materials (assuming the heat flow is in the vertical direction)

Model Structure schematic Effective thermal
conductivity equation

Reference Eq. (1) parameter
values

Parallel model K = v1k1 + v2k2 di!1 or ~k ¼ ki

Maxwell–Eucken 1 (ME1) (k1 = continuous phase,
k2 = dispersed phase)

K ¼
k1v1 þ k2v2

3k1

2k1 þ k2

v1 þ v2
3k1

2k1 þ k2

[8,9] di = 3 and ~k ¼ k1

EMT model v1
k1 � K
k1 þ 2K

þ v2
k2 � K
k2 þ 2K

¼ 0 [10,11] di = 3 and ~k ¼ K

Maxwell–Eucken 2 (ME2) (k1 = dispersed phase,
k2 = continuous phase)

K ¼
k2v2 þ k1v1

3k2

2k2 þ k1

v2 þ v1
3k2

2k2 þ k1

[8,9] di = 3 and ~k ¼ k2

Series model K ¼ 1

v1=k1 þ v2=k2
di = 1 or ~k ! 0

Nomenclature

A, B, C, D, F, G intermediate variables defined within
the text

d shape factor
f empirical weighting factor
k thermal conductivity of a component

(W m�1 K�1)
K effective thermal conductivity of a material

(W m�1 K�1)
m number of components
n number of structures
v volume fraction of component

Greek symbols

e structure volume fraction
/ structure composition factor
j effective thermal conductivity of a structure

(W m�1 K�1)

Subscripts

i ith component
j jth structure
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around each of the spheres do not interfere with their
neighbours’ temperature distributions. For a two-compo-
nent material, two forms of the Maxwell–Eucken model
arise depending on which of the components forms the
continuous phase. The EMT model assumes a completely
random distribution of all the components. Table 1 lists
the two-component forms of the equations for each of
these models along with a schematic of its assumed physi-
cal structure.

Several effective thermal conductivity studies have recog-
nised the importance of these basic structural models in the-
oretical analyses and for developing more complex models,
in particular with regards to defining thermal conductivity
bounds for certain classes of physical structure [15–18]. In
this paper we present a procedure for modelling complex
physical structures as composites of these basic elementary
structural models using simple combinatory rules.

2. Model development

2.1. A unifying equation for the basic structural models

Following on from work by Brailsford and Major [16]
each of the model equations shown for two components
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in Table 1 may be derived for a multi-component material
from Eq. (1) by suitable choice of the parameters di and
~k:

K ¼
Pm

i¼1kivi
di~k

ðdi�1Þ~kþkiPm
i¼1vi

di~k
ðdi�1Þ~kþki

ð1Þ

As indicated in Table 1, the Series model is obtained when
di = 1, or ~k ! 0; the Parallel model is obtained when
di!1 or ~k ¼ ki; the Maxwell–Eucken equation is
obtained when di = 3, ~k ¼ kcont; and the EMT equation is
obtained when di = 3, ~k ¼ K.

The di parameter can have a physical interpretation.
Kirkpatrick [19] related a similar parameter to the number
of Euclidean dimensions of the system involved, while
Fricke [20] and Hamilton and Crosser [21] related it to
the sphericity of the dispersed phase. However, it may be
possible to define a parameter that combines both aspects
of component shape and number of Euclidean dimensions.
This is the topic of ongoing investigations by the authors,
but falls outside the scope of this paper. The most common
approach is to take di = 3 (spherical dispersed phase).

2.2. Empirically weighted mixtures of basic physical

structures

A common approach has been to combine structural
models using empirical weighting. The Series and Parallel
models define the upper and lower bounds (sometimes
referred to as the Wiener bounds [22]) for the effective ther-
mal conductivity of any heterogeneous material for which
the components’ volume fractions and thermal conductivi-
ties are known accurately, provided conduction is the only
mechanism of heat transfer involved. Krischer [7] reasoned
that since the thermal conductivity of any two-component
material must lie between the Wiener bounds, its structure
could be modelled as a mixture of Series and Parallel struc-
tures. He proposed that the effective thermal conductivity
of the combined structure should be the weighted harmonic
mean of the Series and Parallel conductivities:

K ¼ 1

f =kseries þ ð1� f Þ=kparallel

ð2Þ

Chaudhary and Bhandari [23] and Renaud et al. [24] used
similar approaches, based on weighted geometric and
arithmetic means, respectively.

Clearly this reasoning may be extended using narrower
bounds, such as those proposed by Hashin and Shtrikman
[15] which were equivalent to the two forms of the Max-
well–Eucken model, or Carson et al. [18], which were based
on the Maxwell–Eucken and EMT models. Making use
of Krischer’s approach and Eq. (1), a generic weighted
model can be defined that would allow a combination of
any of the equations listed in Table 1, and therefore would
be suitable for structures that fit between any of these
bounds:
K ¼ f

Pm
i¼1kivi

di~k
ðdi�1Þ~kþkiPm

i¼1vi
di~k

ðdi�1Þ~kþki

0
@

1
A

structure-1

þ ð1� f Þ
Pm0

i0¼1k0iv
0
i

d 0i
~k0

ðd 0i�1Þ~k0þk0iPm0

i0¼1v0i
d 0i

~k0

ðd 0i�1Þ~k0þk0i

0
@

1
A

structure-2

ð3Þ

However, while such weighted mean combination models
may be useful in some situations, the fact that the value
of the weighting parameters cannot be determined mecha-
nistically from information about the physical structure is a
significant shortcoming. Therefore, we do not advocate
such an approach unless a more analytical and mechanistic
approach cannot be found.

2.3. Structure volume fractions and structure composition

factors

Krischer’s approach assumed that a complex structure
could be approximated by a mixture of simpler structures,
where the relative amounts of each of the simpler structures
was determined empirically. In this work we define ‘‘struc-
ture volume fractions’’ (as distinct from component volume
fractions) for the jth type of structure by Eq. (4):

ej ¼
X

i

vi/ij ð4Þ

where ej represents the volume fraction of a material that is
made up of structure j. Since the ej are fractions of the total
volume:X

j

ej ¼ 1 ð5Þ

The ‘‘structure composition factors’’, /ij, are a measure of
the fraction of component material i that is part of struc-
ture j, and therefore since the total amount of component
i must be distributed between the structures:X

j

/ij ¼ 1 ð6Þ

For m components, the thermal conductivity of structure j

is a function of the v0is; /0ijs and k0is:

jj ¼ jjðv1; v2; . . . ; vm;/1j;/2j; . . . ;/mj; k1; k2; . . . ; kmÞ ð7Þ

If the structure is modelled by one of the five fundamental
models listed in Table 1, Eq. (7) may be written:

jj ¼
Pm

i¼1kivi/ij
di~k

ðdi�1Þ~kþkiPm
i¼1vi/ij

di~k
ðdi�1Þ~kþki

ð8Þ

For n structures, the overall material effective thermal con-
ductivity, K, is a function of the j0js:

K ¼ Kðj1; j2; . . . ; jnÞ ð9Þ
In order to solve Eq. (9), based only on ki and vi and not on
any empirical parameters, it is necessary to determine
expressions for /ij as functions of ki and vi. This may



Fig. 1. Schematic representations of some two-component materials as
uniform mixtures of two fundamental structural models: (a) ME1 + ME2,
(b) Parallel + EMT, (c) ME1 + EMT and (d) ME2 + EMT.
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be achieved by making assumptions about the relative
amounts of each structure, ej, in the total volume and the
relative contributions of the different jj to K. There are
an infinite number of relationships between the e0js and jj

that could be chosen. It may be possible to relate the e0js
to structural characteristics. However, such detailed infor-
mation is often unavailable. Therefore the simplest possible
relationships were adopted. They are to assume that each
structure comprises an equal fraction of the total volume:

ej ¼
1

n
ð10Þ

and that the thermal conductivity of each structure is equal
to the effective thermal conductivity:

K ¼ j1 ¼ j2 ¼ � � � ¼ jn ð11Þ
Other more complex approaches may be justified in some
circumstances. For example, for a material made up of
three structures the distribution of structure volumes does
not have to be uniform and could arbitrarily be e1 = 0.2,
e2 = 0.5, e3 = 0.3 or similar. However, the overall method-
ology is applicable irrespective of what relative values of
e0js and j0js are chosen.

The model is now completely defined for two-compo-
nent materials. The effective thermal conductivity, K, can
be calculated by solving Eqs. (4), (8), (10) and (11) simulta-
neously subject to Eqs. (5) and (6) for a material with
known components and specified structures. Worked
examples of the detailed model derivation process are
shown below for two-component materials. If alternative
relationships are used instead of Eqs. (10) and (11), the
mathematics of solving for K will become slightly more
complex.

For materials with more than two components, extra
assumptions must be made in order for the model to be
completely and uniquely specified. Models for multi-com-
ponent materials are not considered further in this paper;
instead it is assumed that they may be dealt with by sequen-
tial application of the two-component models. For exam-
ple, for a material with three components x, y and z, the
overall effective thermal conductivity is calculated in two
stages. First, the effective thermal conductivity Kxy for
the mixture of two components, x and y, is predicted using
a two-component structural models with the following
adjusted volume fractions: vxx = vx/(vx + vy) and vyy =
vy/(vx + vy). Second, the overall effective thermal conduc-
tivity, K, is predicted for the mixture of xy as one compo-
nent and z as the other component. The volume fraction of
component xy is vxy = vx + vy, while the volume fraction of
z is vz, and the conductivities are Kxy and kz, respectively.
The two-component structural model used for this second
stage may, or may not, be the same as that used in the first
stage. Clearly, there are two other possible sequences for
the calculations based on the choice of components to
include in the first mixture (i.e. xz or yz instead of xy).
The three alternative sequential calculations will usually
not give identical results.
3. Selected binary-structure models

The schematics in Fig. 1a–d represent four of the 10 the-
oretical two-component models with an equal mixture of
two of the five basic structures. Fig. 1a shows half of the
volume has the Maxwell–Eucken structure with component
1 as the continuous phase (structure 1 = ME1), while the
other half of the volume has the Maxwell–Eucken structure
with component 2 as the continuous phase (structure
2 = ME2); similarly, in Fig. 1b structure 1 = Parallel and
structure 2 = ME2; in Fig. 1c structure 1 = ME1 and struc-
ture 2 = EMT; and in Fig. 1d structure 1 = ME2 and struc-
ture 2 = EMT.

3.1. ME1 + ME2 model

Starting with Eq. (8), the appropriate values of di and ~k
are chosen such that structure 1 is the ME1 structure and
structure 2 is the ME2 (Table 1). Hence from Eqs. (8)
and (11):

K ¼ j1 ¼
k1v1/11 þ k2v2/21

3k1

2k1þk2

v1/11 þ v2/21
3k1

2k1þk2

¼ j2 ¼
k2v2/22 þ k1v1/12

3k2

2k2þk1

v2/22 þ v1/12
3k2

2k2þk1

ð12Þ
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Fig. 2. Plots of the five fundamental effective thermal conductivity
structural models listed in Table 1, along with plots of the binary-
structure models shown schematically in Fig. 1a–d for a two component
material with k1/k2 = 20.
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Rearranging Eq. (12) and cancelling terms yields:

/11/22Aþ /12/21B ¼ 0 ð13Þ

where

A ¼ v1v2ðk1 � k2Þ ð14Þ

and

B ¼ �A
3k1

ð2k1 þ k2Þ
3k2

ð2k2 þ k1Þ
¼ �9A

5þ 2k1=k2 þ 2k2=k1

ð15Þ

Based on Eqs. (4) and (10):

v1/11 þ v2/21 ¼ 1=2 ð16Þ

v1/12 þ v2/22 ¼ 1=2 ð17Þ

From Eq. (6):

/11 þ /12 ¼ 1 ð18Þ
/21 þ /22 ¼ 1 ð19Þ

Eqs. (12) or (13) plus (16)–(19) must be solved simulta-
neously to give values of /11, /12, /21, /22 and K given that
values of k1, k2, v1 and v2 are known. For this structure
combination an analytical solution is possible. /12, /21

and /22 may all be written in terms of /11:

/12 ¼ 1� /11 ð20Þ

/21 ¼
1� 2v1/11

2v2

� �
ð21Þ

/22 ¼
2v2 þ 2v1/11 � 1

2v2

� �
ð22Þ

Substituting for /12, /21 and /22 in Eq. (13):

/11

2v2 þ 2v1/11 � 1

2v2

� �
Aþ 1� 2v1/11

2v2

� �
ð1� /11ÞB ¼ 0

ð23Þ

Rearranging Eq. (23) to be explicit in terms of /11:

/11 ¼
Bð2v1þ 1Þ�Að2v2� 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Að2v2� 1Þ�Bð2v1þ 1Þ�2� 8Bv1ðAþBÞ

q
4v1ðAþBÞ

ð24Þ
(Note: if k1 > k2 then the positive square root in Eq. (24)
should be used, and vice versa). K can be calculated from
the left-hand side version of Eq. (12) by substituting /21

using Eq. (21) and using the /11 value calculated from
Eq. (24):

K ¼
k1v1/11 þ k2v2

1�2v1/11

2v2

� �
3k1

2k1þk2

� �

v1/11 þ v2
1�2v1/11

2v2

� �
3k1

2k1þk2

� � ð25Þ

A plot of K/k1 vs. v2 for the ME1 + ME2 model is shown in
Fig. 2 for a material with k1/k2 = 20.
3.2. Parallel + ME2 model

For the Parallel + ME2 model, Eqs. (8) and (11) give

K ¼ k1v1/11 þ k2v2/21

v1/11 þ v2/21

¼
k2v2/22 þ k1v1/12

3k2

2k2þk1

v2/22 þ v1/12
3k2

2k2þk1

ð26Þ

Again, an analytical solution is possible. Eq. (26) is very
similar to Eq. (12), which suggests that an expression for
/11 will be similar to Eq. (24). In fact, it can be shown that
Eqs. (24) and (25) may be used to calculate K for the
Parallel + ME2 model provided B is calculated from
Eq. (27) rather than Eq. (15):

B ¼ 3k2A
2k2 þ k1

ð27Þ

A plot of K/k1 vs. v2 for the Parallel + ME2 model is
shown in Fig. 2.

3.3. ME1 + EMT model

For the ME1 + EMT model, Eqs. (8) and (11) give

K ¼
k1v1/11 þ k2v2/21

3k1

2k1þk2

v1/11 þ v2/21
3k1

2k1þk2

¼
k1v1/12

3K
2Kþk1

þ k2v2/22
3K

2Kþk2

v1/12
3K

2Kþk1
þ v2/22

3K
2Kþk2

ð28Þ

The right-hand side of Eq. (28) may be rearranged to be ex-
plicit in terms of K:

K ¼
ð2k1� k2Þv1/12þð2k2� k1Þv2/22þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2k1� k2Þv1/12þð2k2� k1Þv2/22�

2þ 2k1k2

q
2

ð29Þ
Expressing /11, /12 and /22 in terms of /21, Eq. (28)
becomes:
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K ¼
k1v1

1� 2v2/21

2v1

� �
þ k2v2/21

3k1

2k1 þ k2

v1
1� 2v2/21

2v1

� �
þ v2/21

3k1

2k1 þ k2

¼ C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 2k1k2

p
2

ð30Þ

where

C ¼ ð2k1 � k2Þv1

2v1 þ 2v2/21 � 1

2v1

� �
þ ð2k2 � k1Þv2ð1�/21Þ

ð31Þ
Due to the non-integral powers of /21 on its right-hand
side, Eq. (30) cannot be simply rearranged to be explicit
in terms of /21. Therefore alternative solution procedures
must be adopted. One possibility is to solve Eqs. (30),
(31) and (16)–(19) by numerical iteration. Fig. 3a shows
the plots of /11, /12, /21 and /22 calculated by numerical
iteration using the Solver function in Microsoft ExcelTM

for a two-component material with k1/k2 = 20.0. The shape
of the curve for /21 suggests that it could be accurately fit-
ted by a polynomial function, which would then allow /21
0
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Fig. 3. Plots of structure volume factors /11, /12, /21 and /22 for a two-
component material with k1/k2 = 20: (a) ME1 + EMT model and (b)
ME2 + EMT model.
to be expressed explicitly. Eq. (32) has been fitted to /21

curves for k1/k2 values between 1 and 100:

/21 ¼ f0:1353 lnðk1=k2Þ � 0:1193gv3
1

þ f0:2551 lnðk1=k2Þ � 0:1711gv2
1

þ f0:1203 lnðk1=k2Þ � 0:0523gv1 þ 0:5 ð32Þ

Fig. 4 shows that Eq. (32) provides good approximations
of /21 without the inconvenience of using an iterative
numerical solution of the simultaneous equations. At
k1/k2 values lower than 100, the agreement is closer than
shown in Fig. 4. A plot of K/k1 vs. v2 for the ME1 + EMT
model is shown in Fig. 2.

3.4. ME2 + EMT model

For the ME2 + EMT model, Eqs. (8) and (11) give

K ¼
k2v2/21 þ k1v1/11

3k2

2k2 þ k1

v2/21 þ v1/11

3k2

2k2 þ k1

¼
k1v1/12

3K
2K þ k1

þ k2v2/22

3K
2K þ k2

v1/12

3K
2K þ k1

þ v2/22

3K
2K þ k2

ð33Þ

Following the same approach as for the ME1 + EMT
model, Eq. (33) becomes

K ¼
k2v2

1� 2v1/11

2v2

� �
þ k1v1/11

3k2

2k2 þ k1

v2

1� 2v1/11

2v2

� �
þ v1/11

3k2

2k2 þ k1

¼ Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 2k1k2

p
2

ð34Þ

where

D ¼ ð2k1 � k2Þv1ð1� /11Þ þ ð2k2 � k1Þv2

2v2 þ 2v1/11 � 1

2v2

� �

ð35Þ
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Again, a simple analytical solution is not possible. Fig. 3b
shows the plots of /11, /12, /21 and /22 calculated by
numerical iteration for the ME2 + EMT model for a two
component material with k1/k2 = 20. As with the ME1 +
EMT model, a polynomial expression for /11 can be de-
rived to avoid solution of Eq. (34) by numerical iteration.
For k1/k2 between 1 and 100:

/11 ¼ f�0:0526 lnðk1=k2Þ2 þ 0:2125 lnðk1=k2Þ � 0:1689gv3
1

þ f0:0886 lnðk1=k2Þ2 � 0:5758 lnðk1=k2Þ þ 0:4879gv2
1

þ f�0:0407 lnðk1=k2Þ2 þ 0:3881 lnðk1=k2Þ þ 0:3478gv1 þ 0:5

ð36Þ

A plot of K/k1 vs. v2 for the ME2 + EMT model is shown
in Fig. 2.

4. Multi-structure models

Extension of the procedure to a ternary-structure model
(EMT + ME2 + Series) gives:

K ¼ v1/11 þ v2/21

v1/11=k1 þ v2/21=k2

¼
k1v1/12

3K
2K þ k1

þ k2v2/22

3K
2K þ k2

v1/12

3K
2K þ k1

þ v2/22

3K
2K þ k2

ð37Þ

K ¼
k2v2/23 þ k1v1/13

3k2

2k2 þ k1

v2/23 þ v1/13

3k2

2k2 þ k1

¼
k1v1/12

3K
2K þ k1

þ k2v2/22

3K
2K þ k2

v1/12

3K
2K þ k1

þ v2/22

3K
2K þ k2

ð38Þ

v1/11 þ v2/21 ¼ 1=3 ð39Þ
v1/12 þ v2/22 ¼ 1=3 ð40Þ
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Fig. 5. Plots of five fundamental effective thermal conductivity structural
models along with plots of selected ternary, quaternary and five-structure
models for a two-component material with k1/k2 = 20.
v1/13 þ v2/23 ¼ 1=3 ð41Þ
/11 þ /12 þ /13 ¼ 1 ð42Þ
/21 þ /22 þ /23 ¼ 1 ð43Þ
Due to the complexity of the algebra involved in solving
Eqs. (37)–(43) simultaneously, solution by iteration with
the aid of a tool such as ExcelTM Solver becomes a more
practical option than solving algebraically. Fig. 5 shows a
plot of the EMT + ME2 + Series model calculated using
ExcelTM, along with plots of the five basic structural models.
Quaternary models (an example of which is plotted in
Fig. 5) and the five-structure model (plotted in Fig. 5)
may also be derived by further extension of this method.

By using every possible combination of the five basic
structural models, 10 binary models, 10 ternary models,
five quaternary models and one five-structure model may
be derived, giving a total of 26 new effective thermal con-
ductivity models, each with a distinct physical basis.

5. Practical application

Clearly these combined models may not be applicable
for materials whose structures could be mathematically
defined. In such cases, more specific models are often justi-
fied by greater prediction accuracy. But for naturally
occurring materials which are characterised by high degrees
of variability (such as soils and biological materials), sim-
pler, more generic models, are more convenient.

The five basic structural models listed in Table 1 have
been widely used, but without modification they cannot
account for wide ranges of structure. Models such as
Krischer’s use an empirical approach to account for differ-
ences in structure; however, unless there are data in the lit-
erature for f, the value of this parameter must be
determined by experimentation. This often defeats the pur-
pose of thermal conductivity prediction because it is very
difficult to perform an intuitive estimate of the value of f
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Fig. 6. Plots of Krischer’s model (Eq. (2)) for different values of f for a
two-component material with k1/k2 = 20.
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due to the highly non-linear dependence of K on f for a
given v2 as shown in Fig. 6.

Models derived by the procedure outlined above have
two major advantages over models such as Krischer’s that
use empirical, structure-related parameters. Firstly, regard-
less of the value of f, Krischer’s model assumes a highly
anisotropic physical structure. Carson [25] has shown that
over a range of compositions, thermal conductivity models
that assume anisotropic structures will not fit experimental
data for isotropic structures as well as conductivity models
that are based on isotropic physical models, and, it is
reasonable to assume, vice versa. Models derived from
Eq. (1) may have either isotropic or anisotropic struc-
tures.

Secondly, the models described in this work have dis-
tinct individual physical bases, which allow for an intuitive
approach to the selection of the appropriate model. For
example, Carson et al. [18] proposed thermal conductivity
bounds for two classes of porous materials. ‘‘Internal
porosity materials’’ were defined as materials in which
the gaseous phase was dispersed in a continuous high con-
ductivity phase – the upper bound of thermal conductivity
of internal porosity materials was given by the Maxwell–
Eucken model with the gaseous phase dispersed (ME1 in
this paper), while the lower bound was defined by the
EMT model. The ME1 + EMT model provides a logical
intermediate structure between these two extremes that
may be more accurate for an internal porosity material that
has neither a true Maxwell structure nor a true EMT struc-
ture. With a model such as Krischer’s, the choice of f (or
the equivalent parameter) might be little more than a guess.
6. A physical basis for Levy’s model

Levy [26] produced a model based on the Maxwell–Euc-
ken model that avoided the perceived ‘‘problem’’ of decid-
ing which of the two Maxwell–Eucken equations to use for
a given material, since they produced different results (in
actual fact this was not a problem, since the two forms
were not supposed to produce the same result). The model
was

K ¼ k1

2k1 þ k2 � 2ðk1 � k2ÞF
2k1 þ k2 þ ðk1 � k2ÞF

ð44Þ

where

F ¼
2=G� 1þ 2v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=G� 1þ 2v2Þ2 � 8v2=G

q
2

ð45Þ

and

G ¼ ðk1 � k2Þ2

ðk1 þ k2Þ2 þ k1k2=2
ð46Þ

However, since this model was derived solely by algebraic
manipulation, with no stated physical basis, some subse-
quent researchers have been hesitant to recommend its
use. For example, Pham and Willix [27], who were model-
ling the thermal conductivity of frozen meat and offal prod-
ucts, stated that: ‘‘The best predictions by far are obtained
with Levy’s model, which yields correct values. . .over the
whole range of compositions. . .and temperatures. . .consid-
ered. The drawback of Levy’s equation is a certain lack of
physical justification, since it was based on mathematical
rather than physical arguments.’’

A comparison of the effective thermal conductivities pro-
duced by Levy’s model and the ME1 + ME2 model above
shows that they are identical, and hence the two models
are equivalent. Therefore the physical model of Levy’s
equation, which must be the same as the ME1 + ME2
model, is a homogeneous mixture (on the macroscopic
scale) of equal volumes of the two Maxwell structures, in
which the conductivities of both component structures are
equal, as represented schematically in Fig. 1a.

7. Conclusions

A unifying equation has been developed for five funda-
mental effective thermal conductivity structural models
(Series, Parallel, two forms of Maxwell–Eucken, Effective
Medium theory), which form the basis of many of the
more complex models available in the literature. Structure

volume fractions and structure composition factors were
defined and used in a new procedure for modelling complex
materials as composites of these five basic structures, using
simple combinatory rules (equal structure volumes and
equal structure effective thermal conductivities). Worked
examples for deriving models using the proposed procedure
were presented. Each new model derived using this proce-
dure is dependent only on the component materials’ vol-
ume fractions and thermal conductivities, and not on any
empirical parameter. In addition, each model has a distinct
physical basis. The model combining the two forms of the
Maxwell–Eucken model was shown to be equivalent to
Levy’s equation, thereby providing Levy’s model with a
physical basis.
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Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calcula-
tion of different physical constants of heterogeneous substances. I.
Dielectric constant and conductivity of media of isotropic sub-
stances), Annalen der Physik 24 (1935) 636–664.



J. Wang et al. / International Journal of Heat and Mass Transfer 49 (2006) 3075–3083 3083
[4] E. Behrens, Thermal conductivities of composite materials, J.
Compos. Mater. 2 (1968) 2–17.

[5] T.H. Bauer, A general analytical approach toward the thermal
conductivity of porous media, Int. J. Heat Mass Transfer 36 (1993)
4181–4191.

[6] E.E. Gonzo, Estimating correlations for the effective thermal
conductivity of granular materials, Chem. Eng. J. 90 (2002) 299–302.

[7] O. Krischer, Die wissenschaftlichen Grundlagen der Trocknungs-
technik (The Scientific Fundamentals of Drying Technology),
Springer-Verlag, Berlin, 1963. Cited in English in: R.B. Keey, Drying
of Loose and Particulate Materials, Hemisphere Publishing Corpo-
ration, New York, 1992 (Chapter 7).

[8] R.P.A. Rocha, M.E. Cruz, Computation of the effective conductivity
of unidirectional fibrous composites with an interfacial thermal
resistance, Numer. Heat Transfer, Part A: Applicat. 39 (2) (2001)
179–203.

[9] G. Buonanno, A. Carotenuto, The effective thermal conductivity of
packed beds of spheres for a finite area, Numer. Heat Transfer, Part
A: Applicat. 37 (4) (2000) 343–357.

[10] M. Christon, P.J. Burns, R.A. Sommerfeld, Quasi-steady temperature
gradient metamorphism in idealized dry snow, Numer. Heat Transfer,
Part A: Applicat. 25 (3) (1994) 259–278.

[11] J.C. Maxwell, A Treatise on Electricity and Magnetism, third ed.,
Dover Publications Inc., New York, reprinted 1954 (Chapter 9).

[12] A. Eucken, Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermö-
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